

Local and Widespread Hypoalgesic Effects of Neurodynamic Mobilization in Asymptomatic Subjects

Daniel Maddox PT, DPT, OCS, FAAOMPT^{b,b}, Barrett Stanley PT, DPT, OCS, FAAOMPT^b, Poonam Hurley PT, DPT, OCS, FAAOMPT^b, and Fredy Solis, PT, PhD^a ^aDepartment of Physical Therapy, Brenau University, Gainesville, GA; ⁴Upstream Rehab Institute, Smyrna, GA

Introduction

- Local and central mechanisms of hypoalgesia proposed, but conflicting research to support both
- AIM: Aim: To assess the immediate local and widespread hypoalgesic effects of NDM applied to the upper extremity of asymptomatic subjects.
 - Hypothesis 1: Subjects receiving NDM will exhibit greater changes in local and widespread QST measures compared to those receiving sham NDM.
 - Hypothesis 2: Subjects receiving sliders will exhibit greater changes in local and widespread QST measures compared to those receiving tensioners.

2

Outcome	Group	<u>Pre</u> (<u>mean ± SD</u>)	<u>Post</u> (mean ± SD)	<u>Pre-Post Change</u> (<u>Mean, 95% CI)</u>	<u>P-Values:</u> <u>Within-</u> <u>Group</u> <u>Change</u>	<u>P-Values:</u> <u>Between-</u> <u>Group</u> <u>Difference</u>	Results
Local PPT (kgf)	- Slider⁺ - Tensioner++ - Sham⁺	$\begin{array}{c} 5.80 \pm 1.93 \\ 5.87 \pm 2.54 \\ 4.79 \pm 2.00 \end{array}$	$\begin{array}{c} 5.50 \pm 2.25 \\ 5.50 \pm 2.32 \\ 4.52 \pm 1.77 \end{array}$	-0.30 (-1.08 to 0.47) -0.36 (-1.36 to 0.64) -0.27 (-0.86 to 0.32)	.43 .85 .36	.67	
WS PPT (kgf)	- Slider ⁺ - Tensioner ⁺ - Sham ⁺	$\begin{array}{c} 5.97 \pm 2.02 \\ 6.74 \pm 2.43 \\ 5.08 \pm 1.35 \end{array}$	$\begin{array}{c} 6.75 \pm 2.42 \\ 6.85 \pm 2.37 \\ 5.39 \pm 2.08 \end{array}$	0.78 (0.14 to 1.42) 0.10 (-0.38 to 0.58) 0.31 (-0.32 to 0.95)	.02° .66 .32	.30	Within-group analysis: *paired -test **Wilcoxon signed rank test Between-group analysis: Kruskal-Wallis H-test *Significant finding (p <0.05)
Local TPT (°C)	- Slider⁺ - Tensioner⁺ - Sham⁺	41.76 ± 3.23 42.27 ± 3.48 42.00 ± 3.45	$\begin{array}{c} 43.36 \pm 3.59 \\ 44.28 \pm 3.02 \\ 42.56 \pm 2.93 \end{array}$	1.60 (0.50 to 2.70) 2.01 (0.71 to 3.30) 0.56 (-0.71 to 1.83)	.01* .004* .37	.11	
WS TPT (°C)	- Slider ⁺ - Tensioner ⁺ - Sham ⁺	42.51 ± 2.88 43.00 ± 2.92 41.66 ± 2.94	$\begin{array}{c} 43.94 \pm 2.78 \\ 44.34 \pm 2.88 \\ 43.07 \pm 2.57 \end{array}$	1.43 (0.73 to 2.14) 1.33 (0.64 to 2.02) 1.41 (0.62 to 2.20)	<.001* .001* .001*	.88	
Local TPTol (°C)	- Slider ⁺⁺ - Tensioner ⁺⁺ - Sham ⁺	46.97 ± 3.23 47.91 ± 2.06 47.46 ± 2.15	$\begin{array}{c} 48.15 \pm 2.01 \\ 48.86 \pm 1.50 \\ 48.07 \pm 2.04 \end{array}$	1.18 (0.49 to 1.87) 0.95 (0.20 to 1.69) 0.61 (0.13 to 1.08)	.001° .004° .02°	.51	
WS TPTol (°C)	- Slider ⁺ - Tensioner ⁺⁺ - Sham ⁺	47.59 ± 1.90 47.79 ± 1.77 47.06 ± 2.00	$\begin{array}{c} 48.45 \pm 1.45 \\ 48.44 \pm 1.63 \\ 47.67 \pm 1.68 \end{array}$	0.86 (0.56 to 1.16) 0.65 (0.31 to 0.98) 0.61 (0.28 to 0.94)	<.001* .001* .001*	.34	

6

8